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SUMMARY 
The influence of artificial dissipation schemes on the accuracy and stability of the numerical solution of 
compressible flow is extensively examined. Using an implicit central difference factored scheme, an improved 
form of artificial dissipation is introduced which highly reduces the errors due to numerical viscosity. 
A function of the local Mach number is used to scale the amount of numerical damping added into the 
solution according to the character of the flow in several flow regimes. The resulting scheme is validated 
through several inviscid flow test cases. 
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1. INTRODUCTION 

The numerical solution of the equations that describe the motion of a compressible fluid has 
become commonplace in recent years. Time-marching numerical methods are usually imple- 
mented and many of them have been proven robust and accurate. 

One of the most important properties that any method must possess is good damping 
behaviour, i.e. the ability to reduce the error towards zero as time increases to infinity while 
maintaining the accuracy of the solution within acceptable bounds. The damping behaviour of 
a scheme depends on the artificial dissipation, either inherent in the scheme, as in all classes of 
upwind schemes, or explicitly added, which is the case when central differencing is used. 

Warming and Hyett’ have introduced the ‘modified equation approach’ to examine the 
dissipative and dispersive properties of a numerical scheme. They suggest the transformation of 
the original differential equation by eliminating the time derivatives higher than first order, using 
any numerical scheme, to obtain the exact partial differential equation solved by the finite 
difference algorithm used. It is the right-hand-side terms of this modified equation that determine 
whether the numerical scheme is properly damping or not. They should contain even-order 
derivatives with the appropriate sign. Upwind schemes inherently provide this kind of terms, 
while central schemes do not and thus it is necessary to explicitly add them. 

In this paper we shall consider only central differences. For that purpose we use one of the most 
popular implicit schemes of the last decade, which was introduced by Beam and Warming’ and 
tested extensively in several kinds of 

Any form of numerical damping is designed to accomplish two objectives. The first is to prevent 
the odd-even point decoupling due to phase errors from the solution and the second is to 
eliminate oscillations near the shock waves. The stronger the shock wave to be captured, the 
greater is the amount of dissipation needed to be added into the solution. Pulliam6 and Jameson 
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et a1.' used a blended non-linear form of second- and fourth-order artificial dissipation terms, 
while Swanson and Turkel* introduced some modifications to Jameson et al.'s model for better 
performance in multigrid calculations of flow problems around aerofoils. 

Our previous experience5* has shown that dissipation schemes can lead to false thick entropy 
layers near solid boundaries and stagnation points in inviscid flow and can cause instabilities in 
the solution of both viscous and inviscid flow problems. On the other hand, large amounts of 
artificial damping smear the shock waves, providing solutions of pour quality. Furthermore, the 
existing dissipation schemes are highly dependent on the computational grid used, being more 
dissipative on a highly stretched grid than on a smoother one. In the present study we introduce 
a procedure that improves the erroneous behaviour of numerical damping in a physical manner. 
The dominating role of the local Mach number is exploited and the result is an artificial 
dissipation scheme which provides only the necessary amount of dissipation, without destroying 
either the accuracy or the stability of the solution, and which seems to perform equally well on 
smooth as well as on highly skewed grids. 

To isolate the role of artificial dissipation from the other characteristics of the numerical 
solution, we examine only inviscid flow cases in this work. This is done because the solution of the 
equations of an inviscid fluid provides accuracy criteria based on physical assumptions and 
excludes the influence of approximations such as the modelling of turbulence from the investiga- 
tion. On the other hand, any conclusions concerning the stability and robustness of a numerical 
scheme derive from its performance in inviscid flow solution, where the absence of any physical 
dissipation clearly reveals its accuracy. 

2. GOVERNING EQUATIONS AND NUMERICAL ALGORITHM 

The equations used are the two-dimensional unsteady Euler equations, in conservative form, for a 
generalized curvilinear co-ordinate system. In their non-dimensional form they can be written as 

where 

Q= J - 1  

P 

P" 
e 

PV 
PU v+ rlxP  
PUV+rl,P 

(e + P )  V -  VrP 
are the vector of conservative variables and the convective fluxes respectively. 

pu \ 

In the above expressions { and q are the curvilinear co-ordinates, which are related to the 
Cartesian co-ordinates x and y through the generalized co-ordinate transformation 

t=t(x,y,+ v=q(x,y,t), t = r ,  

and J = 5,q, - r,qx is the Jacobian of the transformation. The Cartesian velocity components are 
denoted by u and u, p is the density and e is the specific total energy per unit volume. The pressure 
p and temperature Tare given by the equations of state for a perfect gas. Finally, U and V are the 
contravariant velocities along the directions 6 and q respectively, given by 

u = r, + rxu + 5,u, v= qr + qxu + q,v. 

The reference quantities are a reference velocity Urcf, a reference length LrcP and a reference 
density plcf at some reference temperature TI,. The reference value for time is then defined as 
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Lref/Uref and for the pressure and total energy as the product pr,fU:ef. The Mach number is 
defined as 

The governing equations (1) are solved numerically following the method introduced by Beam 
and Warming.' We shall not go into details of the algorithm for reasons of brevity. We shall only 
outline the basic features of the scheme as it is implemented in the present study. 

The generalized time differencing used is 

8At d At a c AQ"=- - AQ" +- - Q"+- AQ'-' + 0[(8-4- [) At2 + At3]. 
i + c a t  i + c a t  i + c  

By simply varying the values of the coefficients 8 and c in the above expression, a variety of 
temporal discretizations can be produced. For example, when 8= 1 and c=O.5 the three-point 
backward implicit scheme is obtained, when 8 = 1 and c =O the Euler implicit scheme is derived 
and with 8 = 0 and c =O the Euler explicit. 

If equation (1) is solved for aQ/at and the resulting expression is inserted in (2), if the flux 
vectors are linearized in the non-linear expression that occurs and if for the coupled system of 
equations the Approximate Factorization technique is used, then the following solution algorithm 
in delta formulation occurs: 

Q"+ 1 = Q" + AQ", 

with the right-hand side (RHS) of (3a) being given by 

(34 
At c RHS =- (- FF - G:) +-AQ"-' + De + 0 [(O-i-c)At' + At3] ,  

1+c 
where I denotes the identity matrix and A and B are the Jacobian matrices of F and G over 
Q respectively. Finally, Df and DT are the implicit damping operators in the directions 5 and 
q respectively, while D, is the explicit dissipation term, which will be examined in detail in the 
following sections. 

3. ARTIFICIAL DISSIPATION 

Central differences are used for the discretization of the spatial derivative appearing in equations 
(3), so the explicit damping term D, must be added to damp high-frequency oscillations. This 
term, as seen from equation (3d), modifies the equation that is actually solved. It must therefore be 
small in magnitude so that the overall second-order spatial accuracy is not destroyed. Further- 
more, the implicit damping term Di should be added in the implicit operators of equations (3) to 
extend the stability range of the solution and not to accelerate the convergence of the 
scheme.'0i'' 

If the explicit damping term D, consists only from fourth-order terms?. ' the scheme is proven 
unreliable for inviscid flow cases. The fourth-order terms fail to initialize the solution from free 
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V!? = 

stream values unless large values of the linear scaling coefficients are used, but even then spurious 
oscillations are present near the shock waves and the convergence rate decelerates by a factor of 
two or more." 

It is far more reliable to use the blended non-linear dissipation model that Jameson et al.7 have 
introduced for a finite volume scheme and Pulliam6 for a finite difference scheme: 

D , = V , = [ ~ ! ~ ~ ( E I ~ ~ ( ~ ~ A ~ J Q - E ~ ~ ~ ( ~ ) A , = V , = A , = J Q ) ] + V , [ ~ ! ~ ~ ( E I ~ ~ ( ~ ) A ~ J Q - E ~ ~ ~ ( ~ ) A , V , A ~ J Q ) ] .  (4) 

In the above expression V,=, V ,  and A,=, 4 are the backward and forward difference operators 
respectively, a(,=) and d") are non-linear scaling coefficients intended to scale the whole dissipation 
terms by the local eigenvalues of the solution and and d4) are coefficients used to switch from 
fourth- to second-order damping near the shock waves. The latter are given by the following 
expressions: 

~!!i(~) = k2At max(vi+ j, vi, vi- 1, j), (54 

(6) I -  Pi, j+ 1 - 2 ~ i .  j + Pi, j- 1 

Pi, j+ I + 2 P ,  j+Pi, j-1 

~ i + l , j - 2 ~ i , j + ~ i - l . j  1, v!11=1 
Pi + 1, j + 2Pi. j + P i -  I ,  j 

with s being the local speed of sound. 
Careful observation of the above expressions leads to the following two important remarks. 
The first is that the scaling factors of equations (7) give equal importance to both spatial 

directions, using the direct sum of both eigenvalues. This is equivalent to second-order upwind 
differencing, which switches to first-order near shock waves, and is effective on regular meshes 
with a cell aspect ratio close to unity. However, on fine grids with cell aspect ratios much greater 
than unity, adequate dissipation is added in one direction, while too much unnecessary damping 
is added in the other direction. This causes a loss of accuracy and may lead to false entropy layers 
in inviscid flow near solid boundaries. If the sum of eigenvalues is replaced by a directional 
scaling* of the form 

a!?$= J tj  Af, j + JL'I, ,If+ 1, j, = Jcj  A?, j + J c;+ I A7, j+ i 3 (9) 
then instabilities may appear and oscillations near shock waves are excited.' 

The second remark is that near shock waves the coefficient d2) takes rather large values owing 
to the large pressure gradients there, so that from equations (5c) and (5d) d4) drops to zero and 
hence only second-order dissipation is added. In smooth flow regions dz) should vanish and thus 
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only fourth-order dissipation should be added as background dissipation to prevent odd-even 
point decoupling. Unfortunately, the value of v does not vanish away from shock waves, since the 
pressure gradient is non-trivial in other flow regions too, e.g. hear stagnation points and solid 
surfaces, especially when separation occurs in viscous flows. The same would happen if another 
quantity’s derivative had been used, instead of pressure, for the definition of v.” 

The error due to highly skewed grids could be reduced by using a cell aspect ratio scaling of the 
whole dissipaton quantity De,12 but this would not prevent the erroneous behaviour of the 
dissipation scheme near stagnation points and within boundary layers. 

As a physical and automated way to reduce the dissipation added in these flow regions, we 
propose the use of a Mach number function. The local Mach number is lower than the free stream 
Mach number in the stagnation region and higher upstream of a shock wave. It is also lower 
within low-speed regions, while it is of approximately the same size in regions of ‘neutral’ 
importance. We thus suggest that alternative expressions for both the scaling factor 0 and the 
damping sensor v should be used, multiplying them by an exponential function of the local Mach 
number. 

In particular, equations (6) are modified into 

while equations (7) are modified into 

In the above equations ML and M, are the local and free-stream Mach numbers respectively, 
while a and b are user-specified constants. Note that either expressions (10) or expressions (1 1) are 
used, but not both simultaneously. The scaling with the Mach number has a dual effect. In 
inviscid flow the Mach number function reduces the amount of dissipation near the stagnation 
point while increasing the dissipation added near shock waves. In viscous flow an additional 
effect is that within a boundary layer, where the local Mach number is small, the numerical 
dissipation added is reduced, providing more accurate solutions. 

It should also be noticed that the use of equations (10) is not expected to be equivalent to that of 
equations (1 1). The damping sensor v is effective by intention near shock waves and by mistake 
near stagnation points and adverse pressure gradient regions. It is then expected to adjust the 
sewn-order damping added and only thus increase the accuracy. On the other hand, the scaling 
factor Q acts over the whole damping term D, and is expected to be more effective on accuracy. 
Furthermore, it contains a cell aspect ratio scaling of the eigenvalues: which is important on 
skewed grids. 

For the flow cases to be considered here, the constants that appear in the expressions above are 
held at the following constant values: k2 = 0.25, k4 = 001, a = 0, 1,2 and b = 0 1  (equations (10) 
and (1 1)). 

Near computational boundaries the dissipation scheme should be modified so that the stability 
and accuracy are not disturbed. Since computations are performed on all internal grid points 
from i = 2 to i = i,,, - 1 and from j = 2 to j =  imp, - 1 and the second-order terms of equation (4) 
necessitate information from a three-point stencil, there is no difficulty in implementing the 
second-order terms to points near computational boundaries (i.e. i = 2  or i = i,,, - 1). However, 
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when the fourth-order terms are considered, information is required at two neighbouring points 
on each side of the boundary grid point being considered. Therefore special treatment of these 
terms is needed for the first interior points. After an extensive examination of the various 
strategies that could be followed," we have used second-order terms near the boundaries instead 
of fourth-order ones. 

When the point j = 2  is encoutnered, for example, we assume that 

(JQ)i. j +  1 -2(JQ)i, j + (JQ)i, j -  1 = 0 at j = 2. 

Then the expansion of equation (4) at j = 2  is 

D?, ~ = ( a i ,  3 + bi, 2){EW2)C(JQ)i. 3-(JQ)i, 21-~1~)2(~)C(JQ)i ,4-3(JQ)i ,  3 + 3(JQ)i, 2-(JQ)i, 11} 

-(ai, 2 +ai, 1){$'Y2)C(JQ)i, 2-(JQ)i, ~I-~I?I'~'C(JQ)I, 3 -2(JQ)i, 2 +(JQ)i, I]}* (13) 
The same treatment is followed at all computational boundaries. The terms multiplied by ~ ( q ) ( ~ )  in 
equation (1 3) are second-order damping terms and provide almost the same high-frequency 
damping at boundaries as the interior fourth-order terms.*. 

4. RESULTS AND DISCUSSION 

4.1. Numerical implementation and boundary conditions 

To validate the introduced form of artificial dissipation, three inviscid flow cases are con- 
~idered.'~ In the present section only the most important findings of this investigation will be 
presented. For a more detailed discussion the reader is referred to Reference 11. These three 
inviscid cases are summarized in Table I. 

The first-order Euler implicit scheme has been used (6 = 1 and [ = 0 in equations (3)) for all 
computations. For the acceleration of the convergence a local time-stepping technique is 
employed. The local time step is given by 

where At,, is predefined. 
The arbitrary curvilinear meshes used are generated by an elliptic solver developed by the 

authors following S0rens0n.l~ Only C-type grids are considered, because in general the trailing 
edge point is a multivalued one and thus it should be treated as two distinct points, which is 
ensured by the use of C-type grids. The quality of the solution is then proved if the values of 
velocity at these two points differ in lifting cases while the static pressure values remain the same. 

At the far-field boundary the local characteristic approach is used to define the Riemann 
invariants, either by extrapolation from the interior or by setting them equal to their free stream 

Table I. Summary of test cases of present study on inviscid flow around NACA 0012, aerofoil'l 
~ 

No. M, a (deg) Grid size Wake points Outer boundary distance (chords) 
~~ 

1 0.95 0 71 x 30 10 -4GxG5, - 5 6 y 9 5  

2 1 *2 7 257 x 36 42 -9 9 x c  10, - 10G y 9 10 
095 0 257 x 36 42 -9 <X 9 10, - 1OGyG 10 

3 0 8  1.25 257 x 50 20 - 15GxG 15, - 1 5 ~ 9  15 
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values according to the local subsonic or supersonic inflow or outflow. The same procedure is 
followed at the outflow boundary, but instead of the Riemann invariants the actual conservative 
variables are extrapolated or-when the flow is locally subsonic-the pressure is set equal to its 
free stream value. On the wake cut the conservative variables are obtained by averaging and for 
the fourth-order dissipation terms the same internal stencil is applied. Values from the other side 
of the wake cut are assigned to the necessary points from outside the domain. 

On the aerofoil surface the normal momentum equation is used to define the pressure. The total 
enthalpy on the aerofoil is set equal to its free stream value. The tangential velocity is defined by 
extrapolation from the interor. We have examined several extrapolation strategies for the 
velocity." The one found to introduce the minimum error in terms of total pressure loss is finally 
implemented in the present calculations. If the aerofoil is a r-line (j= l), V, is the velocity 
tangential to the <-line at each point and V, is the normal to this line velocity component, then 

where c=(u, u ) ~  is the velocity vector and rs.=(xc, ye)' is the 5-covariant 6ase vector. 

component of the j = 2  point, V,2, on the direction tangent to the surface ( j =  1): 
The tangential velocity on the solid surface is defined by projection of the tangential velocity 

r v,, = v,, * A . 
1 %  I 

For an impermeable stationary solid surface V,, = O  and thus the Cartesian velocity components 
are obtained by 

For reasons of clarity in the subsequent discussion the following observations should be made. 
In all computations the form of the explicit damping was that of equation (4). When we refer to 
the use of equations (7) or (9), which are the forms of the scaling factor found in the literature, or 
(1 l), which is the form of CT introduced here, we imply that CT in equation (4) is defined by equations 
(7), (9) or (11) respectively. On the other hand, when we refer to the use of equations (lo), we imply 
that v of (10) is used to define the coefficients E in equation (4). 

4.2. Flow cases 

The first case considered was the flow around the NACA 0012 aerofoil at M ,  = 0.95 and a = 0". 
For this non-lifting case on oblique shock wave appears on the trailing edge of the aerofoil and 
a second shock wave in the wake region. Two different grid sizes were used, a coarse 71 x 30 grid 
and a finer 257 x 36 grid (Figure 1). In terms of accuracy a comparison of the pressure coefficient, 
Mach number and total pressure loss on the aerofoil surface with those of Reference 13 is 
performed. 

The total pressure loss on the aerofoil surface with the 71 x 30 grid is presented in Figure 2 for 
the three different scaling factors of equations (7), (9) and (11). The normal grid spacing on the 
aerofoil for this grid is 0.001 chords and the points are clustered towards the leading and trailing 
edges. The error in total pressure is far larger when equations (7) are used to define the scaling 
factor. It reduces significantly when the directional eigenvalues scaling of equations (9) is used, but 
oscillations are excited near the trailing edge. The error is significantly reduced, as are the 
oscillations near the shock, when the cell aspect ratio scaling of equations (1 1) with a=O is used. 



1398 M. P. THOMADAKIS AND S. TSANGARIS 

(4 @) 

Figure 1. (a) Coarse (71 x 30) and (b) tine (257 x 36) C-type grids for inviscid Bow. Enlargement near aerofoil 
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Figure 2. Total pressure loss on aerofoil surface for various damping scaling factors. M,=095, a=W, 71 x 30 grid 

For the 257 x 36 grid the normal grid spacing is approximately 0.0005 chords and the points 
are also clustered towards the leading and trailing edges, thus leaving a rather sparse point 
distribution in the region 0.4<x/c<06. On this fine grid the relative performance of the 
introduced improvements of equations (10) and (11) is evaluated. As was previously mentioned, 
either equations (10) or (11) are used, but not both simultaneously. Their impact on the accuracy 
of the solution is clearly seen in Figure 3, where the total pressure loss on the aerofoil's surface is 
presented. It is obvious that a more accurate solution is obtained when scaling with the Mach 
number function is performed on the damping coefficient CJ of equations (11) rather than on the 
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Figure 3. Comparison of influence that equations (10) and (1 1) have on accuracy: (a) surface distribution; (b) detail near 
trailing edge. M ,  =0.95, a =O", 257 x 36 grid 

damping sensor v of equations (10). Moreover, when the Mach number scaling is used in 
equations (ll), oscillations near the trailing edge are less excited. We thus assume that using 
equations (1 1) is more effective than using equations (10). 

In Figure 4 the influence of the exponent a on the accuracy is evaluated. For the same flow case, 
subsequent implementation of equations (1 1) is performed with different values of the exponent a. 
The minimum error is introduced when a = 1, except for the leading edge region, where using a = 2 
is more accurate. The oscillations near the trailing edge shock wave are better damped when a = 1. 
This is due to the increased amount of dissipation added there because of the higher value of the 
Mach number function near the shock. As we shell see in the next case, the use of a = 2  is not 
reliable. 

In Figure 5 the much higher accuracy that the introduced dissipation model provides over 
existing ones is clearly demonstrated, For the same fine grid the total pressure error that the 
damping coefficient of equations (7) causes is almost twice as large as the error which the new 
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Figure 4. Effect on accuracy of exponent a: (a) surface distribution; (b) detail near trailing edge. M,=0-95, m=o0, 
251 x 36 grid 
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Figure 5. Total pressure loss on aerofoil surface for existing and improved damping scaling factors. M, =0.95, a=Oo, 
257 x 36 grid 
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Figure 6. Convergence history on 257 x 36 grid for various damping scaling factors used. M, =0.95, a=O" 

scaling factor of equations (1 1) with a = 1 causes. A comparison with Figure 2 shows that the error 
which equations (7) introduce is much higher on coarse grids, while the error of equations (11) is 
almost the same on fine and coarse grids. 

Although in most regions of the flow field reduced numerical viscosity is added with the new 
scheme, this does not affect the stability of the solution. This can be seen in Figure 6, where the 
convergence history of the present flow case is presented for the fine grid. As the convergence 
criterion the quantity max I Ap 1" is used. The implementation of either equations (7) or (1 1) with 
a= 1 has almost the same effect on convergence. In contrast, convergence is slower when 
equations (9) are used a computer time increase of approximately 80% is observed. The 
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convergence rate when using a = 0 or 2 in equations (1 1) is the same as when a = 1 is used. This is 
not always ture, as will be shown in the following flow cases. 

To conclude with the first flow case, the lines of constant Mach number in the flow field and the 
Mach number distribution on the aerofoil surface in comparison with the corresponding results 
of Reference 13 are presented in Figure 7. The iso-Mach lines were obtained using the improved 
dissipation of equations (1 1) with a= 1. It must be noted here that the picture of the flow field does 
not vary from one dissipation scheme to another for this particular case. 

For the second inviscid case considered, the free stream Mach number is 1.2 and the angle of 
attack is ct = 7". A detached bow shock appears before the leading edge and it would be interesting 

1.50 
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0.50 

O W 0 0  REF, 13 
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0.00 
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Figure 7. (a) Constant Mach number lines around NACA 0012 aerofoil (AM=O.05). (ti) Mach number distribution on 
aerofoil surface. M, = 0.95, a = 0", 257 x 36 grid 
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to see the relative performance of the various manipulations of the dissipation there. It must be 
noted here that instabilities were observed when the scaling factor of equations (9) was used as 
well as when the new scaling of equations (11) with a=2 was used. 

The most important finding in this particular case is that when the improved artificial 
dissipation scheme was used, the bow shock was captured more sharply. This can be seen in 
Figure 8, where the solutions obtained with the scaling of equations (7) (Figure 8(a)) and with the 
new scheme of equations (11) with a= 1 (Figure 8(b)) are shown. This can also be verified from 
Figure 9(a), where the Mach number distribution on the upstream axis emanating from the 
leading edge to the inflow far-field boundary is shown. The use of equations (7) smears the bow 
shock over more grid points, while the shock is better captured with the scaling of equations (1 1) 
with a = 1. The distribution of the Mach number on the aerofoil surface is shown in Figure 9(b). 
No appreciable differences between the solutions exist and the comparison with the solution of 
Reference 13 is very good. The differences that appear in the strength of the shock wave on the 
trailing edge in both the last two cases are due to the much denser grid of the best solution of 
Reference 13 (320 points on the aerofoil, against 173 of our solution). This comparison would be 
better if a denser grid was used in the present calculations or if the points were further clustered 
towards the trailing edge, but this would add nothing to the objective of this study and so was not 
performed. 

Finally, the convergence history of this case is presented in Figure 10. This concerns only tose 
calculations which led to stable solution. It is obvious from this figure that the convergence rate 
for all the solutions is almost the same. 

The last case that was tested was the flow at free stream Mach number 0.8 and incidence of 
1.25". The mesh used for this case consisted of 257 x 50 grid points and the outer boundary was 
located 15 chords away from the aerofoil. The normal grid spacing on the aerofoil surface was 
0.00056 chords and the points on the surface were fairly equidistantly distributed. We are only 
going to present the Mach number and total pressure loss distributions on the aerofoil surface, 

Figure 8. Mach number contours around aerofoil for various scaling factors (AM=0.05). M, = 1.2, a= 7", 257 x 36 grid 
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Figure 9. Mach number distribution on (a) upstream axis and (b) aerofoil surface for various dissipation forms. M, = 1.2, 
a=7" 
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Figure 10. Convergence history on 257 x 36 grid for various damping scaling factors used. M = 1.2, a = 7", 257 x 36 grid 

and these only for the scaling of equations (7) and (1 1). Figure 11 shows the former distributions 
while Figure 12 presents the latter for a = 1. A simple comparison of the two figures shows clearly 
that the introduced dissipation scheme provides sharper shock waves on both the upper and 
lower surfaces of the aerofoil. At the same time the error on the total pressure isjue times smaller 
when the improved scheme is used. It must be noted that when we set a=2 in equations (ll), 
instabilities were also observed. This proves that the standard value of a should be a = 1 for robust 
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Figure 11. (a) Mach number and (b) total pressure loss distributions on aerofoil surface for scaling factor of equations (7). 
M, =@8, a= 1-25", 257 x 50 grid 
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Figure 12. (a) Mach number and (b) total pressure loss distributions on aerofoil surface for scaling factor of equations (1 1) 
with a = 1, M, -0.8, a = 1.25" 

performance of the new dissipation scheme. We assume that the instabilities observed when a = 2 
are due to the very small amount of dissipation that is added, which turns the solution unstable. 
The solution converged for all other values of a as well as for all the other dissipation scaling 
factors. 

5. CONCLUSIONS 

An improved artificial dissipation scheme is introduced in the present study and its enhanced 
properties are validated through numerical experiments for inviscid flows around aerofoils. The 
main advantages that the use of the new form of artificial dissipation offers can be summarized as 
follows. 

1. The amount of numerical viscosity used by the driving scheme is automatically scaled by 
a local Mach number function. 
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2. The accuracy of the solution is improved near solid surfaces and stagnation points. For 
a given grid the error can be reduced by as much as five times compared to the error that 
existing dissipation schemes cause. 

3. The shock waves are captured within less grid points and the oscillations near them are 
greatly reduced. 

4. The error in the solution is equally small on coarse and fine grids, while for existing schemes 
the error is much greater on coarse grids and can be reduced only by grid rehement. 

5. The amount of dissipaton added into the solution is correctly scaled for every cell aspect 
ratio. It is efficient on both smooth and highly skewed grids. 

The promising performance of the improved scheme in inviscid flow calculations is expected to 
be of great importance of viscous calculations also. Its accurate performance on skewed grids as 
well as in regions of low speed would be very useful for the accurate numerical resolution of 
boundary layers and separation regions. 
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